
Process Querying:
Methods, Techniques, and Applications

Artem Polyvyanyy

Abstract Process querying studies concepts and methods from fields like big data,
process modeling and analysis, business process intelligence, and process analytics
and applies them to retrieve and manipulate real-world and designed processes. This
chapter reviews state-of-the-art methods for process querying, summarizes techniques
used to implement process querying methods, discusses typical applications of
process querying, and identifies research gaps and suggests directions for future
research in process querying.

1 Introduction

Process querying aims to combine concepts studied by disciplines that look into the
use of large and complex data sets, like big data, and research areas that investigate
aspects related to process modeling and analysis, like business process management,
process mining, business process intelligence, and process analytics to develop
methods and tools for automatically manipulating, e.g., redesigning and optimizing,
real-world and designed processes, and systematically extracting process-related
information for subsequent use [28]. A process querying method is a technique that
given a collection of processes and a process query, i.e., a statement that articulates a
process-related information need or specifies an instruction for process manipulations,
systematically implements the query over the processes.

The idea of process querying started to shape at the beginning of the twenty-first
century. However, the lion’s share of concepts, principles, and methods for process

Artem Polyvyanyy
School of Computing and Information Systems
Faculty of Engineering and Information Technology
The University of Melbourne
Victoria 3010, Australia
e-mail: artem.polyvyanyy@unimelb.edu.au

1

artem.polyvyanyy@unimelb.edu.au

2 Artem Polyvyanyy

querying appeared only recently. The reason for this is at least twofold. First, recent
large-scale digitization of real-world processes governed by organizations has led
to the generation of large volumes of digital footprints of real-world processes and
supporting data. Second, increasing evidence of added value due to the use of data
generated by processes [32], as well as of information about the processes in forms of
models and ontologies, for improving future real-world processes has spawn research
on new analysis techniques aimed to understand and interpret process phenomena,
giving the birth to the discipline of Process Science.

This chapter gives an overview of the state-of-the-art methods for process querying.
The methods are classified into those for querying observed and recorded processes,
i.e., event logs, as studied in process mining [1], process models, either automatically
discovered from event logs using process mining algorithms, or manually designed, as
traditionally studied in business process management [10, 42], and such that address
the querying of both logs and models. Besides, the chapter discusses techniques that
underpin the existing process querying methods and practical applications of process
querying methods as recommended and employed by academia and industry. The
content of this chapter is based on the literature reviews reported in [24, 28] and
extends them by further insights reported by the contributors of this book.

The rest of this chapter unfolds as follows. The next section provides the foun-
dations necessary for following the subsequent discussions. Section 3 discusses the
existing methods for process querying. Next, Section 4 gives an overview of tech-
niques that are commonly used to implement process querying methods. Section 5
summarizes the main applications of process querying, as recommended or evalu-
ated by the authors of the process querying methods. Finally, Section 6 summarizes
research gaps and suggests directions for future research in process querying.

2 Foundations

This section lists basic concepts in process querying that are necessary to support
the subsequent discussions. Let Uan and Uav be the universe of attribute names and
attribute values, respectively.

Event. An event e is a relation between some attribute names and attribute values
with the property that each attribute name that participates in the relation is related
to exactly one attribute value, i.e., it is a partial function e : Uan ⇀ Uav.

Set e = {(case,120327),(time,2020-02-03T00:27:29Z),(act,“Open claim”)} is an
example event with three attributes. A possible interpretation of these attributes is that
event e belongs to the process with case identifier e(case) = 120327, was recorded
at timestamp e(time) = 2019-10-22T11:37:21Z (ISO 8601), and was generated by
the activity with name e(act) = “Open claim”.

Process. A process π is a partially ordered set (E,≤), where E is a set of events and
≤ is a partial order over E.

Trace. A trace τ is a process (E,<), where < is a total order over E.

Process Querying: Methods, Techniques, and Applications 3

Open

Claim

Close

Claim

Review

Claim

Fig. 1: A process model.

A trace is often specified as a sequence of events with the same case identifier ordered
by timestamps in ascending order. Hence, a trace groups events that were generated
by the same process instance. For example, 〈e1,e2,e3〉 is a trace composed of three
events. In a process, in general, some events may be unordered to reflect that they
are independent and, thus, can be, or were already, executed simultaneously.

Behavior. A behavior b is a multiset of processes.

The fact that a behavior is a multiset of processes can be used when describing that a
process was observed and recorded several times. Behavior b1 =

[
τ9

1 ,τ
3
2
]
, where τ1 =

〈{(act,“Open claim”)},{(act,“Review claim”)},{(act,“Close claim”)}〉 and τ2 =
〈{(act,“Open claim”)} ,{(act,“Close claim”)}〉, specifies that a claim is opened,
then reviewed, and finally closed nine times, and is opened and then immediately
closed three times.

Behavior model. A behavior model is a simplified representation of real-world
or envisioned behaviors, and relationships between the behaviors, that serves a
particular purpose for a target audience.

The model in Figure 1 is a model of an envisioned behavior captured as a BPMN dia-
gram. According to the semantics of BPMN, the model specifies behavior composed
of traces τ1 and τ2, whereas behavior b1 is a possible description of the observed
behavior induced by the executions of the diagram. In [28], we suggest several
classes of behavior models. According to this classification, the diagram in Figure 1
identifies a process model, while behavior b1 identifies an event log. In general, a
process model describes a potentially infinite collection of envisioned processes,
whereas an event log captures a finite collection of already executed processes. The
reader can refer to [28] for further details on the different classes of behavior models.

Process repository. A process repository is an organized collection of behavior
models.

For example, a process repository can be composed of process models and/or logs
organized in a folder hierarchy.

Process query. A process query is a statement that describes an information need in
a process repository or specifies an instruction to manipulate a process repository.

A sample process query q can specify an instruction to retrieve all process models
from a repository that describe behaviors with processes in which activity “Review
claim” occurs.

4 Artem Polyvyanyy

Let Upr and Upq be the universe of process repositories and the universe of process
queries, respectively.

Process querying method. A process querying method m is a relation between
ordered pairs, where in each pair the first entry is a process repository and
the second entry is a process query, and process repositories with the property
that each pair is related to exactly one process repository, i.e., it is a function
m : Upr× Upq → Upr.

Therefore, a process querying method maps an input process repository and a pro-
cess query onto a resulting process repository obtained by implementing the query
statement on the input repository. For instance, given that the model in Figure 1 is
contained in the input repository, query q mentioned above will result in a repository
that contains the model.

3 Process Querying Methods

This section summarizes all the process querying methods covered in this book. The
methods are grouped based on the types of behavior models that can be taken as input
in process repositories and are referred to by the short names of the corresponding
languages for specifying process queries.

3.1 Log Querying

Process querying methods discussed in this section operate over event logs.

BP-SPARQL. BP-SPARQL is a textual language for summarizing and analyzing
process execution data, for example, event logs [4–7]. The language extends SPARQL
with constructs for querying Big Process Data described in an RDF graph of process-
related entities. Such process-related entities are, for instance, events, actors, and
relationships. Examples of relationships include the ordering relations between events
and relations between entities and their attributes. The language is implemented using
Hadoop, Map Reduce, and Pig-Latin technologies. Being an extension of SPARQL,
BP-SPARQL allows querying using standard SPARQL capabilities.

DAPOQ-Lang. The Data-Aware Process Oriented Query Language (DAPOQ-Lang)
is a textual language for retrieving sub-logs of event logs and querying data con-
straints [19, 20]. In this way, DAPOQ-Lang aims to support answering business
questions that arise in process mining [1]. DAPOQ-Lang is an SQL wrapper that
aims to simplify SQL queries by defining and operating over a concrete meta-model
for representing event log data, called the OpenSLEX meta-model. Hence, the fo-
cus is on the usability of the language as compared to corresponding SQL queries.
The language supports querying over events in traces and related data objects, their

Process Querying: Methods, Techniques, and Applications 5

versions, and data schemas, as well as over the temporal properties of all these
elements.

PIQL. Process Instance Query Language (PIQL) is a textual language for computing
Boolean and numeric process performance indicators over traces and instances of
process tasks [23]. The language aims to support business users in decision-making
and monitoring and management of business processes. PIQL is user friendly to
nonexperts, as in addition to machine-readable, it also offers a human-readable syntax
formulated in terms of natural language statements. The language can be used to
define decision logic that depends on the information kept in the historical traces and
used during future process execution. PIQL can be integrated with Decision Model
and Notation (DMN) to support process decisions, obtain measurements to display
on process dashboards, and support the data flow.

3.2 Model Querying

This section summarizes methods for querying process models. These methods can
be split into those that operate over process model specifications and those that
target behaviors encoded in process models. The former methods can be further
split into two subclasses. The first subclass comprises methods originally proposed
for querying general conceptual models and reported useful for querying process
models. DMQL and VM* belong to this subclass. The second subclass consists of
dedicated techniques for querying process models. BPMN VQL and Descriptive
PQL are languages that belong to the second subclass. Finally, CRL, QuBPAL, and
PQL operate over behaviors encoded in process models.

DMQL. The Diagramed Model Query Language (DMQL) is a visual language for
querying collections of conceptual models created in arbitrary graph-based modeling
languages [9]. The language also supports approximate analysis of the executions of
process models in the presence of loop structures. DMQL querying is implemented as
searching for model subgraphs that correspond to a predefined pattern query. DMQL
is proposed not only to query process models but can also be used to query data
models, organizational charts, and other model types.

VM*. The Visual Model Manipulation Language (VM*) is a family of languages
for expressing queries (VMQL), constraints (VMCL), and transformations (VMTL)
over conceptual models [2, 38, 39]. The authors of VM* languages advocate their
application over process models, for example, UML Activity Diagrams and BPMN
models. VM* extends the meta-model of the host language with several intuitive
annotations. Such an approach broadens the usability of VM* queries, as they
resemble models captured in the host language, which decreases the user effort
for reading and writing queries. For example, VMQL for querying BPMN models
subsumes the syntax and notation of BPMN. The matching of VM* queries is
implemented through pattern matching over model graphs.

6 Artem Polyvyanyy

BPMN VQL. BPMN Visual Query Language (BPMN VQL) is a visual process
query language. BPMN VQL can be used to retrieve structural information about
the queried models and knowledge related to the domain of the models. BPMN
VQL queries follow the structure of SQL, borrow the syntax from BPMN, while the
semantics of BPMN VQL queries is grounded in SPARQL [13]. A BPMN VQL query
consists of two parts. The matching part of the query specifies a structural condition
to match in process models, whereas the selection part specifies parts of models
to retrieve as a query result. When executed, BPMN VQL queries get translated
to SPARQL using a formalization of the BPMN meta-model as an RDF ontology.
The authors of the language have conducted empirical studies that demonstrate that
BPMN VQL queries are easier to understand than natural language queries and that
it is easier to formulate BPMN VQL queries than to match natural language queries
against process models.

Descriptive PQL. Descriptive Process Query Language (Descriptive PQL) is a tex-
tual language for retrieving process models and specifying abstractions and changes
over process models [16]. The manipulations on models are defined using Single-
Entry-Single-Exit subgraphs [30] and implemented via translations to the Cypher
graph query language, where Cypher is a declarative query language for querying
and changing graphs stored in graph database [22].

QuBPAL. Querying Business Process Abstract modeling Language (QuBPAL) is
a textual ontology-based language for retrieving process fragments and their subse-
quent reuse, e.g., when constructing fresh process models. QuBPAL queries resemble
SPARQL queries and are executed over collections of BPMN process models, their
meta-model and behavioral semantics, domain knowledge, and semantic annotations.
When executed, QuBPAL queries are translated into Logic Programming queries
and evaluated using the Prolog inference engine [34–36]. The authors suggest that
QuBPAL can also be used for querying at run-time over running process instances
and over the logs of completed processes.

CRL. Compliance Request Language (CRL) is a process query language grounded
in temporal logic designed to support standard process compliance rules [12]. Specif-
ically, CRL supports process compliance rules that address control flow, resource,
and temporal aspects of business processes. CRL queries are executed over BPEL
specifications by translating the queries to LTL or MTL and then model checking the
resulting temporal logic properties over BPEL specifications using the SPIN model
checker [15]. CRL is designed with the relevance and usability of the supported
queries in mind. For instance, the control flow compliance rules are grounded in the
patterns identified in a comprehensive survey [11].

PQL. Process Query Language (PQL) is a textual query language based on executions
and behavioral relations, e.g., ordering, mutual exclusion, and concurrency, between
tasks in executions of process models [26, 27, 29]. PQL reuses parts of the abstract
syntax of APQL and has an SQL-like concrete syntax. The semantics of PQL is
defined over all possible executions of process models and is independent of notations
used to describe process models.

Process Querying: Methods, Techniques, and Applications 7

The core of PQL is grounded in the behavioral relations of the 4C spectrum [31]—
a systematic collection of the co-occurrence, conflict, causality, and concurrency
relations. In addition, PQL can reason at the level of process scenario templates
(a.k.a. sample process executions with placeholders). For example, one can retrieve
models from a process model collection that can execute a specified process scenario
or augment models to describe a fresh process scenario template. The latter query
type is implemented in PQL as a solution to the process model repair problem [25].

3.3 Log and Model Querying

Methods from this section can be used to query process models and event logs.

BPQL. Business Process Query Language (BPQL) is a textual language for querying
over process models and event logs [17, 18]. It aims at making process specifica-
tion more flexible by defining such elements as resource assignment and transition
conditions via BPQL queries evaluated during process execution. The language
is defined as an extension of the Stack-Based Query Language (SBQL) [40]. The
semantics of the language is defined over the proposed abstract model for capturing
process specifications and execution traces. The authors of BPQL proposed BPQL
templates for monitoring process execution and integrated the language with the
BPMN standard. BPQL can be used to aggregate information over the attributes of
tasks, for instance, to compute the cost of a trace based on the costs of individual
tasks in the trace.

Celonis PQL. Celonis Process Query Language (Celonis PQL) is a domain-specific
language that operates over a process data model that combines data about a process
of interest from various systems into one snowflake schema [41]; snowflake schemas
are often used to develop data warehouses. Celonis PQL is designed for business
users and aims to support process discovery, enhancement, and monitoring, three
well-studied problems in process mining [1]. Business users can use Celonis PQL to
formalize their process questions and execute them automatically to gain valuable
process-related insights. The language supports over 150 operators, including process-
related functions, machine learning, and mathematical operators. The syntax of the
language resembles SQL. Thousands of users from different industries use Celonis
PQL daily.

4 Process Querying Techniques

Existing process querying methods are often founded on well-established techniques.
Some most commonly used techniques used to implement process querying are
summarized in this section.

8 Artem Polyvyanyy

Structural Analysis. Behavior models like process models or event logs can be
formalized as graphs. Several methods perform process querying by analyzing struc-
tural properties of graphs used to describe behavior models, e.g., DMQL and VM*.
Examples of graph analysis tasks used for process querying include the problem of
determining if a path exists in a graph and subgraph isomorphism problem.

Behavioral Analysis. Several existing process querying methods can support the
analysis of properties of behaviors encoded in models, e.g., QuBPAL. These methods
can be used to issue process queries that specify conditions over all the processes (of
which there can be potentially infinitely many) encoded in the behaviors of models
stored in a process repository.

Given a model of a finite-state system, e.g., a behavior model or an event log, and
a formal property, model checking techniques verify whether the property holds for
the system [3]. The formal properties are usually specified using formal logics.

Temporal Logic. A temporal logic is a formal language for specifying and reasoning
about propositions qualified in terms of time [21]. Several process querying meth-
ods are grounded in temporal logics, e.g., CRL. Given a process repository and a
process query, these methods proceed by translating the query into a temporal logic
expression, e.g., Linear Temporal Logic (LTL), Computation Tree Logic (CTL), or
Metrical Temporal Logic (MTL) expression. Then, each behavior model from the
repository is translated into a finite-state system and verified against the expression.
Those behavior models that translate to systems for which the property captured in
the expression holds constitute the query result.

First-order Logic. First-order Logic (FOL) is a formal logic that extends proposi-
tional logic, which operates over declarative propositions, with the use of predicates
and quantifiers [37]. The QuBPAL language for process querying is an example
language that operates by translating its queries to FOL and model checking them
against the models in the repository. Hence, the process repository is interpreted as a
formal FOL theory, while queries verify the formal properties of the theory.

Process querying can be grounded in techniques for data querying.

Data Querying. Data querying is a technique for retrieving and augmenting data.
Structured Query Language (SQL) is a language for managing data stored in a
relational database [8]. DAPOQ-Lang is an example language for process querying
grounded on SQL. It is an SQL wrapper that aims to simplify query formulation over
a relational model for storing collections of event logs.

SPARQL Protocol and RDF Query Language (SPARQL). SPARQL is a seman-
tic query language for retrieving and manipulating data captured in the Resource
Description Framework (RDF) format [14]. Hence, SPARQL queries operate over
data stored as a collection of “subject-predicate-object” triples. Several methods for

Process Querying: Methods, Techniques, and Applications 9

process querying are based on SPARQL, e.g., BPMN VQL and BP-SPARQL. These
methods encode process repositories as RDF data and implement process querying by
first transforming process queries into SPARQL queries and then executing SPARQL
queries over the RDF data.

Graph Querying. A graph querying technique can be used for data querying in
annotated graphs [33]. For instance, Descriptive PQL uses the Cypher graph query
language [22] to implement process querying; Cypher is a declarative graph query
language used in the Neo4J graph database. By relying on Cypher, Descriptive PQL
queries can formulate intents to retrieve and augment underlying graph structures of
the queried process models.

5 Process Querying Applications

Due to their generic purpose, namely retrieval, manipulation, and management of
behavior models stored in process repositories, process querying methods have many
applications in process mining and business process management. Some example
applications of process querying are listed below. These applications were mentioned
and exemplified by the authors of the process querying methods covered in this book.
The list is not meant to be exhaustive but should provide an impression about the
broad range of process querying applications.

Business process compliance management. Business process compliance man-
agement studies approaches to check and ensure that business processes satisfy
relevant compliance requirements, for example, legal regulations and policies. Pro-
cess queries are often used to specify conditions that lead to violations of compliance
requirements, while the corresponding query results contain models that violate the
requirements.

Business process weakness detection. A weakness of a business process is its part
that hinders process execution or has a negative impact on process performance.
Such weaknesses are often modeled using syntactically correct model fragments,
but according to their semantic, they are undesirable or even harmful. An example
of a weakness in a process is when a document is first printed and later scanned. A
condition that represents a business process weakness can be formulated as a process
query and then executed over a process repository to identify all occurrences of the
weakness.

Infrequent behavior detection. Real-world event data are full of noise and rare
anomalous behavior. Using such raw data as input to process mining techniques
is detrimental to the results and, hence, insights about real-world processes these
techniques deliver. Infrequent behavior detection studies algorithms for identifying
noise and irregular event patterns in event data to be filtered before applying process
mining. Some process querying methods allow specifying conditions and, thus,
querying for infrequent process behavior.

10 Artem Polyvyanyy

Process discovery. Process discovery is a problem studied in process mining and
consists of automating the task of process modeling. That is, given event data, e.g.,
an event log of an IT system, a process discovery algorithm automatically constructs
a process model that describes the data. Process querying methods can be used
to support process discovery, for example, by retrieving event data of interest and
filtering out the data that discovery algorithms deem not important for fulfilling their
tasks.

Process enhancement. Process enhancement can be seen as a problem that general-
izes the problem of process discovery. Process enhancement aims to improve, for
example, extend, correct, or annotate, an existing process model based on event data
about its actual executions. Hence, process discovery can be seen as process enhance-
ment when the original process model is empty. Similar to process discovery, various
process queries can be used to support steps of process enhancement algorithms
concerning event data selection.

Process instance migration. Process instance migration is the task of adapting an
incomplete execution of a process model to continue execution according to the rules
of a different process model. This different process model can be a redesigned version
of the original model that caters to new requirements. The migration instructions can
be formalized as process queries and executed using process querying methods.

Process model comparison. The problem of process model comparison deals with
assessing how similar two given process models are. Note that the problem can be
instantiated with different notions of similarity, including structural and behavioral
criteria. Such criteria for assessing similarity can be specified as process queries.
Then, models that get included in the results of most of such similarity queries can
be accepted as most similar.

Process model translation. Process model translation deals with translating process
model labels from one natural language to another, for example, from English to
Ukrainian, or vice versa. Solving this problem is useful when process models are used
in multinational companies, as process models can be reused at different branches
of the company around the globe. The operationalization of the relabeling of the
process model concepts can be implemented through process querying.

Process monitoring. Process monitoring is the task of identifying problematic and
successfully performing processes. The aggregated information about the perfor-
mance of currently executing processes can often be implemented via process queries
and then visualized via process performance dashboards.

Process reuse. Process reuse refers to the problem of constructing process models
from the existing ones or their fragments. Hence, existing process models, fragments,
and process patterns from other contexts are reused instead of creating them from
scratch. Process querying can be used to discover reusable process pieces with desired
characteristics for subsequent composition in new process models.

Process scheduling. As resources are in general scarce and usually follow certain
availability patterns, for example, due to the work shifts or maintenance cycles, their

Process Querying: Methods, Techniques, and Applications 11

availability needs to be scheduled. Process scheduling is concerned with determining
which resources and when to utilize in order to maximize the performance of cur-
rently executing processes or process parts. Process querying can support process
scheduling, for example, to inquire about the status of the resources, execute the
scheduling logic, or assign resources to pending process tasks.

Process selection. Process selection refers to the practice of choosing how an orga-
nization carries out its operations, for instance, customer claim handling. Indeed,
the exact process followed may differ for customers of various demographic groups.
Such process selection rules, or business rules, can be encoded as process queries
that use process case information and information on past process executions to
implement the decision logic.

Process standardization. Standard process models are models that should be used as
references; that is, they are exemplar models for describing best practices for certain
classes of behaviors. Process standardization refers to the problem of replacing
similar process models or similar model fragments with a single unified model or
fragment. Process querying is useful at the early stages of process standardization, as
queries can help identify similar fragments that should be standardized. Such similar
models or model fragments can be included in the result of a corresponding carefully
designed process query.

Process variance management. Process variance management is the task of identi-
fying, maintaining, and improving the handling of variants of the same process in
an organization. This task can be supported by process querying at various stages.
For example, process queries can specify conditions for identifying process variants,
pinpointing their differences, and supporting their standardization.

Syntactical correctness checking. Syntactical correctness checking is the task of
identifying process models that violate the syntax rules of the modeling language
used to capture them. Alternatively, syntactical correctness checking can be used to
verify whether process models adhere to the modeling guidelines established by the
organization. For example, the organization can establish that only a subset of the
modeling constructs is allowed in process models. Rules for checking the syntactical
correctness of process models can be captured as process queries.

6 Past, Present, and Future of Process Querying

Future work on process querying will aim to achieve process querying compro-
mise [28], i.e., it will propose new and improve the existing process querying methods
to support more practically relevant process queries that can be computed efficiently.
As of today, the development of process querying methods still constitutes a non-
coordinated effort. Many languages and systems for process querying were designed
and developed in silos. Future work should contribute to the consolidation of various
methods leading to the definition of a standard meta-model for behavior models

12 Artem Polyvyanyy

and behaviors that these models describe, and a standard language for capturing
process queries. Such consolidation may take place, for instance, around the Process
Querying Framework [28], which defines typical components of a process querying
solution as well as their interfaces and details roles of the constituent components.
This book is the first step in this direction.

The existing process querying languages and methods cover a wide range of use
cases and applications. A small tendency is observed toward the design of more
methods that operate over specifications of behavior models. Besides, while there is
a plethora of languages and techniques for capturing and executing instructions for
filtering process repositories, i.e., selecting processes with specific characteristics,
methods for manipulating process repositories, i.e., changing processes, are scarce
and are still in their infancy. Future research will close these gaps by devising
techniques that operate over the behaviors process models describe rather than their
structures and developing methods that manipulate models to include or exclude
certain behaviors they describe.

Many process querying techniques suffer from performance issues, if not for most
basic queries then for the intricate ones. To overcome such performance limitations,
dedicated indexes can be designed and constructed for certain classes of process
queries to allow trading the additional space for storing the indexes for the speedup
in the processing of queries. This design of indexes should be guided by empirical
investigations on which queries are considered most useful by the users. Indeed,
those intricate and useful queries should inform the development of process querying
indexes. Unfortunately, only several such empirical works exist, and this gap must be
addressed in future work.

References

1. van der Aalst, W.M.P.: Process Mining – Data Science in Action, 2nd edn. Springer Berlin
Heidelberg (2016). DOI 10.1007/978-3-662-49851-4

2. Acretoaie, V., Störrle, H., Strüber, D.: VMTL: a language for end-user model transformation.
Software and Systems Modeling 17(4), 1139–1167 (2018). DOI 10.1007/s10270-016-0546-9

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
4. Beheshti, A., Benatallah, B., Motahari-Nezhad, H.R.: ProcessAtlas: A scalable and extensible

platform for business process analytics. Software: Practice and Experience 48(4), 842–866
(2018). DOI 10.1002/spe.2558

5. Beheshti, S., Benatallah, B., Motahari-Nezhad, H.R.: Scalable graph-based OLAP analytics
over process execution data. Distributed and Parallel Databases 34(3), 379–423 (2016). DOI
10.1007/s10619-014-7171-9

6. Beheshti, S., Benatallah, B., Nezhad, H.R.M.: Enabling the analysis of cross-cutting aspects in
ad-hoc processes. In: Advanced Information Systems Engineering, Lecture Notes in Computer
Science, vol. 7908, pp. 51–67. Springer (2013). DOI 10.1007/978-3-642-38709-8_4

7. Beheshti, S., Benatallah, B., Nezhad, H.R.M., Sakr, S.: A query language for analyzing business
processes execution. In: Business Process Management, Lecture Notes in Computer Science, vol.
6896, pp. 281–297. Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-642-23059-2_22

8. Date, C., Darwen, H.: A Guide to the SQL Standard: A User’s Guide to the Standard Database
Language SQL. Addison-Wesley (1997)

Process Querying: Methods, Techniques, and Applications 13

9. Delfmann, P., Breuker, D., Matzner, M., Becker, J.: Supporting information systems analysis
through conceptual model query – the diagramed model query language (DMQL). Communi-
cations of the Association for Information Systems 37, 24 (2015)

10. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management, 2nd edn. Springer (2018). DOI 10.1007/978-3-662-56509-4

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 21st international conference on Software engineering -
ICSE '99, pp. 411–420. ACM Press (1999). DOI 10.1145/302405.302672

12. Elgammal, A., Turetken, O., Heuvel, W.J., Papazoglou, M.: Formalizing and applying compli-
ance patterns for business process compliance. Software & Systems Modeling 15(1), 119–146
(2016). DOI 10.1007/s10270-014-0395-3

13. Francescomarino, C.D., Tonella, P.: Crosscutting concern documentation by visual query of
business processes. In: Business Process Management Workshops, Lecture Notes in Business
Information Processing, vol. 17, pp. 18–31. Springer Berlin Heidelberg (2008). DOI 10.1007/
978-3-642-00328-8_3

14. Hebeler, J., Fisher, M., Blace, R., Perez-Lopez, A., Dean, M.: Semantic Web Programming, 1st
edn. Wiley (2009)

15. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–295 (1997).
DOI 10.1109/32.588521

16. Kammerer, K., Kolb, J., Reichert, M.: PQL – A descriptive language for querying, abstracting
and changing process models. In: Enterprise, Business-Process and Information Systems
Modeling, Lecture Notes in Business Information Processing, vol. 214, pp. 135–150. Springer
(2015). DOI 10.1007/978-3-319-19237-6_9

17. Momotko, M.: Tools for monitoring workflow processes to support dynamic workflow changes.
Ph.D. thesis, Polish Academy of Sciences (2005)

18. Momotko, M., Subieta, K.: Process query language: A way to make workflow processes
more flexible. In: Advances in Databases and Information Systems, Lecture Notes in
Computer Science, vol. 3255, pp. 306–321. Springer Berlin Heidelberg (2004). DOI
10.1007/978-3-540-30204-9_21

19. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Everything you always wanted to
know about your process, but did not know how to ask. In: Business Process Management
Workshops: Process Querying, Lecture Notes in Business Information Processing, vol. 281, pp.
296–309 (2016). DOI 10.1007/978-3-319-58457-7_22

20. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases with process
mining: a meta model and toolset. Software & Systems Modeling 18(2), 1209–1247 (2018).
DOI 10.1007/s10270-018-0664-7

21. Ohrstrom, P., Hasle, P.F.V.: Temporal Logic: From Ancient Ideas to Artificial Intelligence.
Studies in Linguistics and Philosophy. Springer Netherlands (2007)

22. Panzarino, O.: Learning Cypher. Packt Publishing (2014)
23. Pérez-Álvarez, J.M., López, M.T.G., Parody, L., Gasca, R.M.: Process instance query language

to include process performance indicators in DMN. In: IEEE Enterprise Distributed Object
Computing Workshops, pp. 1–8. IEEE Computer Society (2016). DOI 10.1109/EDOCW.2016.
7584381

24. Polyvyanyy, A.: Business process querying. In: Encyclopedia of Big Data Technologies.
Springer (2019). DOI 10.1007/978-3-319-63962-8_108-1. URL https://doi.org/10.1007/
978-3-319-63962-8_108-1

25. Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.: Impact-driven
process model repair. ACM Transactions on Software Engineering and Methodology 25(4),
1–60 (2017). DOI 10.1145/2980764

26. Polyvyanyy, A., Corno, L., Conforti, R., Raboczi, S., Rosa, M.L., Fortino, G.: Process querying
in Apromore. In: Business Process Management Demo Session, CEUR Workshop Proceedings,
vol. 1418, pp. 105–109. CEUR-WS.org (2015)

27. Polyvyanyy, A., ter Hofstede, A.H.M., Rosa, M.L., Ouyang, C., Pika, A.: Process query
language: Design, implementation, and evaluation. CoRR abs/1909.09543 (2019)

https://doi.org/10.1007/978-3-319-63962-8_108-1
https://doi.org/10.1007/978-3-319-63962-8_108-1

14 Artem Polyvyanyy

28. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: Enabling
business intelligence through query-based process analytics. Decision Support Systems 100,
41–56 (2017). DOI 10.1016/j.dss.2017.04.011

29. Polyvyanyy, A., Pika, A., ter Hofstede, A.H.M.: Scenario-based process querying for compli-
ance, reuse, and standardization. Inf. Syst. 93, 101,563 (2020)

30. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the
refined process structure tree. In: Web Services and Formal Methods, Lecture Notes in Computer
Science, vol. 6551, pp. 25–41. Springer (2010). DOI 10.1007/978-3-642-19589-1_2

31. Polyvyanyy, A., Weidlich, M., Conforti, R., Rosa, M.L., ter Hofstede, A.H.M.: The 4C spectrum
of fundamental behavioral relations for concurrent systems. In: Application and Theory of Petri
Nets and Concurrency, Lecture Notes in Computer Science, vol. 8489, pp. 210–232. Springer
International Publishing (2014). DOI 10.1007/978-3-319-07734-5_12

32. Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook. Springer Inter-
national Publishing (2020). URL https://books.google.com.au/books?id=OrHWDwAAQBAJ

33. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly (2013)
34. Smith, F., Missikoff, M., Proietti, M.: Ontology-based querying of composite services. In:

Business System Management and Engineering, Lecture Notes in Computer Science, vol. 7350,
pp. 159–180. Springer Berlin Heidelberg (2010). DOI 10.1007/978-3-642-32439-0_10

35. Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business processes. In:
International Conference on Agents and Artificial Intelligence, pp. 130–143. SciTePress (2013)

36. Smith, F., Proietti, M.: Ontology-based representation and reasoning on process models: A
logic programming approach. CoRR abs/1410.1776 (2014)

37. Smullyan, R.M.: First-order Logic. Courier Corporation (1995)
38. Störrle, H.: VMQL: A generic visual model query language. In: IEEE Visual Languages

and Human-Centric Computing, pp. 199–206. IEEE Computer Society (2009). DOI 10.1109/
VLHCC.2009.5295261

39. Störrle, H.: VMQL: A visual language for ad-hoc model querying. Journal of Visual Languages
& Computing 22(1), 3–29 (2011). DOI 10.1016/j.jvlc.2010.11.004

40. Subieta, K.: Stack-based query language. In: Encyclopedia of Database Systems, pp. 2771–
2772. Springer US (2009). DOI 10.1007/978-0-387-39940-9_1115

41. Vogelgesang, T., Kaufmann, J., Becher, D., Seilbeck, R., Geyer-Klingeberg, J., Klenk, M.:
Celonis PQL: A Query Language for Process Mining. Springer (2020). (In Press)

42. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 3rd edn.
Springer (2019). DOI 10.1007/978-3-662-59432-2

https://books.google.com.au/books?id=OrHWDwAAQBAJ

	Process Querying: Methods, Techniques, and Applications
	Artem Polyvyanyy

